目录
第一章:PyTorch 入门
第二章 基础
第一节 PyTorch 基础
第二节 深度学习基础及数学原理
第三节 神经网络简介
神经网络简介 注:本章在本地使用微软的Edge打开会崩溃,请使Chrome Firefox打开查看
第四节 卷积神经网络
第五节 循环神经网络
第三章 实践
第一节 logistic回归二元分类
第二节 CNN:MNIST数据集手写数字识别
第三节 RNN实例:通过Sin预测Cos
第四章 提高
第一节 Fine-tuning
第二节 可视化
第三节 Fast.ai
第四节 训练的一些技巧
第五节 多GPU并行训练
补充翻译文章:在PyTorch中使用DistributedDataParallel进行多GPU分布式模型训练
在PyTorch中使用DistributedDataParallel进行多GPU分布式模型训练
第五章 应用
第一节 Kaggle介绍
第二节 结构化数据
第三节 计算机视觉
第四节 自然语言处理
第五节 协同过滤
第六章 资源
第七章 附录
transforms的常用操作总结
pytorch的损失函数总结
pytorch的优化器总结
讨论区